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Abstract: In this paper, we investigate spectral norms for circulant-type matrices, including circulant, skew-
circulant and g-circulant matrices. The entries are product of binomial coefficients with Fibonacci numbers and
Lucas numbers, respectively. We obtain identity estimations for these spectral norms. Employing these approaches,
we list some numerical tests to verify our results.
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1 Introduction

Circulant, skew-circulant and g-circulant matrices
play important roles in various applications with good
foundation. Circulant-type matrix had been applied
to the area of discussion about economics, digital im-
age disposal, linear forecast, design of self-regress,
etc. For example, the economists can employ spectral
norms of those matrices to construct the optimal filter
for an economic model, and form the building blocks
for most modern circulant-type filters to investigate
the rule of certain economics, and so on. The prop-
erties of this kind of matrix support lots of benefits for
the engineer applications. For the details, please refer
to [1, 7, 8, 12, 13, 14, 15, 18, 21, 22, 23, 25], and the
references therein. The skew-circulant matrices were
collected to construct pre-conditioners for LMF-based
ODE codes, Hermitian and skew-Hermitian Toeplitz
systems were considered in[3, 10, 11, 17], Lyness
employed a skew-circulant matrix to construct an s-
dimensional lattice rules in[16].

Recently, there are lots of research on the spectral
distribution and norms of circulant-type matrices. In
[5], the authors pointed out the processes based on the
eigenvalue of circulant-type matrices with i.i.d. en-
tries, furthermore, they claimed that they converged to
a Poisson random measures in vague topology. There
were discussions about the convergence in probability
and distribution of the spectral norm of circulant-type
matrices in [6]. The authors in [4] listed the limiting
spectral distribution for a class of circulant-type matri-
ces with heavy tailed input sequence. Eric Ngongiep

et al. showed that the singular values of g-circulants
in [19].

Solak established the lower and upper bounds for
the spectral norms of circulant matrices with classical
Fibonacci and Lucas numbers entries in [20]. İpek in-
vestigated an improved estimation for spectral norms
in [26]. In this paper, we derive some identity esti-
mates of spectral norms for some circulant-type ma-
trices with product of binomial coefficients with Fi-
bonacci numbers and Lucas numbers, respectively.

The Fibonacci and Lucas sequences {Fk} and
{Lk} are defined by the following recursive relations

Fn = Fn−1 + Fn−2

with F0 = 0, F1 = 1, and

Ln = Ln−1 + Ln−2

with L0 = 2, L1 = 1.
The binomial coefficients

(
n
k

)
are, for all natural

numbers k, defined by

(1 +X)n =
∑
k≥0

(
n

k

)
Xk.

It is clear that, for k > n,(
n

0

)
=

(
n

n

)
= 1,

(
n

k

)
= 0.

Let
(
n
k

)
be the k-th binomial coefficient of n, Fk

and Lk denotes the k-th Fibonacci and Lucas number,
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respectively. For anyone p ∈ N, we have the follow-
ing formulas [9]

n∑
i=0

(
n

i

)
Fi+p = F2n+p,

n∑
i=0

(
n

i

)
Li+p = L2n+p,

(1)

and
n∑

i=0

(
n

i

)
2iFi+p = F3n+p,

n∑
i=0

(
n

i

)
2iLi+p = L3n+p.

(2)

2 Circulant-type matrices
Definition 1 [13, 15] A circulant matrix is an n × n
complex matrix of the form

Ac =


a0 a1 . . . an−1

an−1 a0 . . . an−2

an−2 an−1 . . . an−3
...

...
. . .

...
a1 a2 . . . a0


n×n

. (3)

The first row of Ac is (a0, a1, · · · , aj , · · · , an−1), its
(j+1)-th row is obtained by giving its j-th row a right
circular shift by one positions.

Equivalently, a circulant matrix can be described
as a polynomial

Ac = f(ηc) =
n−1∑
i=0

aiη
i
c, (4)

where

ηc =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
1 0 0 . . . 0


n×n

.

Obviously, ηnc = In.
We are now in a position to discuss the eigenval-

ues of Ac. Motivated by the relation between matrix
and polynomial, we declare that the eigenvalues of ηc
are the corresponding eigenvalues ofAc with the func-
tion f in (4), which is

λ(Ac) = f(λ(ηc)) =
n−1∑
i=0

aiλ(ηc)
i.

Since

λj(ηc) = ωj , (j = 0, 1, · · · , n− 1),

where ω = cos 2π
n + i sin 2π

n . Thus λj(Ac) can be
calculated via

λj(Ac) =

n−1∑
i=0

ai(ω
j)i, (5)

Similarly, let us recall a skew-circulant matrix.

Definition 2 [13, 15] A skew-circulant matrix is an
n× n complex matrix of the following form

Asc =


a0 a1 . . . an−1

−an−1 a0 . . . an−2

−an−2 −an−1 . . . an−3
...

...
. . .

...
−a1 −a2 . . . a0

 . (6)

Also, a skew-circulant matrix can be described as
matrix polynomial

Asc = f(ηsc) =
n−1∑
i=0

aiη
i
sc,

where

ηsc =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
−1 0 0 . . . 0


n×n

.

Obviously, ηnsc = −In.
To calculate the eigenvalues of Asc, for the same

reason, we obtain

λ(Asc) = f(λ(ηsc)) =

n−1∑
i=0

aiλ(ηsc)
i.

Since

λj(ηsc) = ωjα, (j = 0, 1, · · · , n− 1),

where

ω = cos
2π

n
+ i sin

2π

n
, α = cos

π

n
+ i sin

π

n
,

so λj(Asc) can be computed via

λj(Asc) =
n−1∑
i=0

ai(ω
jα)i.
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Definition 3 [4, 24] A g-circulant matrix is an n× n
complex matrix of the following form

Ag =


a0 a1 . . . an−1

an−g an−g+1 . . . an−g−1

an−2g an−2g+1 . . . an−2g−1
...

...
. . .

...
ag ag+1 . . . ag−1

 , (7)

where g is a nonnegative integer and each of the sub-
scripts is understood to be reduced modulo n.

The first row ofAg is (a0, a1, · · · , an−1), its (j+1)-th
row is obtained by giving its j-th row a right circular
shift by g positions(equivalently, g mod n positions).
Note that g = 1 or g = n + 1 yields the standard
circulant matrix. If g = n − 1, then we obtain the
so called reverse circulant matrix [4].

Definition 4 [2] The spectral norm ∥ · ∥2 of a matrix
A with complex entries is the square root of the largest
eigenvalue of the positive semidefinite matrix A∗A:

∥A∥2 =
√
λmax(A∗A).

where A∗ denotes the conjugate transpose of A.
Therefore if A is an n×n real symmetric matrix or A
is a normal matrix, then

∥A∥2 = max
1≤i≤n

|λi|, (8)

where λ1, λ2, · · · , λn are the eigenvalues of A.

3 Spectral norms of some circulant
matrices

We will analyse spectral norms of some given circu-
lant matrices, whose entries are combined binomial
coefficients with Fibonacci or Lucas numbers, respec-
tively. For the convenience of the discussion, we set
p = 0 in (1), and the same conclusions can be deduced
for ∀p ∈ N.

3.1 Spectral norms of some circulant matri-
ces with modified

(
n
i

)
Fi and

(
n
i

)
Li

Definition 5 Some circulant matrices are defined as
the following forms:

B1 =



(
n
0

)
F0 . . .

(
n
n

)
Fn(

n
n

)
Fn . . .

(
n

n−1

)
Fn−1(

n
n−1

)
Fn−1 . . .

(
n

n−3

)
Fn−3

...
. . .

...(
n
1

)
F1 . . .

(
n
0

)
F0

 ,

B2 =



(
n
0

)
L0 . . .

(
n
n

)
Ln(

n
n

)
Ln . . .

(
n

n−1

)
Ln−1(

n
n−1

)
Ln−1 . . .

(
n

n−3

)
Ln−3

...
. . .

...(
n
1

)
L1 . . .

(
n
0

)
L0

 ,

B3 =



(
m
0

)
F0 . . . −

(
m
m

)
Fm

−
(
m
m

)
Fm . . .

(
m

m−1

)
Fm−1(

m
m−1

)
Fm−1 . . . −

(
m

m−2

)
Fm−2

...
. . .

...
−
(
m
1

)
F1 . . .

(
m
0

)
F0

 ,

B4 =


−
(
m
0

)
F0 . . .

(
m
m

)
Fm(

m
m

)
Fm . . . −

(
m

m−1

)
Fm−1

−
(

m
m−1

)
Fm−1 . . .

(
m

m−2

)
Fm−2

...
. . .

...(
m
1

)
F1 . . . −

(
m
0

)
F0

 ,

B5 =



(
m
0

)
L0 . . . −

(
m
m

)
Lm

−
(
m
m

)
Lm . . .

(
m

m−1

)
Lm−1(

m
m−1

)
Lm−1 . . . −

(
m

m−2

)
Lm−2

...
. . .

...
−
(
m
1

)
L1 . . .

(
m
0

)
L0

 ,

B6 =


−
(
m
0

)
L0 . . .

(
m
m

)
Lm(

m
m

)
Lm . . . −

(
m

m−1

)
Lm−1

−
(

m
m−1

)
Lm−1 . . .

(
m

m−2

)
Lm−2

...
. . .

...(
m
1

)
L1 . . . −

(
m
0

)
L0

 ,

where m, n are integers, and m is odd.

Obviously,

B4 = −B3, B6 = −B5.

Our main results for those matrices are as follows.

Theorem 1 Let B1 be the matrix defined as in defini-
tion 5. Then we have

∥B1∥2 = F2n.
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Proof. Since the circulant matrix B1 is normal (see
Definition 4), we claim that the spectral norm of B1

is equal to its spectral radius. Furthermore, applying
the irreducible and entrywise nonnegative properties,
we claim that ∥B1∥2 (i.e., its spectral norm), is equal
to its Perron value. We select an (n+ 1)-dimensional
column vector

v = (1, 1, · · · , 1)T ,

then

B1v =

 n∑
j=0

(
n

j

)
Fj

 v.

Obviously,
n∑

j=0

(
n
j

)
Fj is an eigenvalue of B1 associ-

ated with v, which is necessarily the Perron value of
B1. Employing (1), we obtain

∥B1∥2 = F2n.

This completes the proof. �
Using the same approach, we can prove the fol-

lowing result.

Theorem 2 Let B2 be the matrix defined as in Defi-
nition 5. Then we have

∥B2∥2 = L2n.

Proof. Using the same techniques of Theorem 1 and
irreducibility and entrywise nonnegativity of the nor-
mal matrix B2, we declare that the spectral norm of
B2 is the same as its Perron value.

Let
vT = (1, 1, · · · , 1)︸ ︷︷ ︸

n+1

.

Then

B2v = (

n∑
i=0

(
n

i

)
Li)v.

Since
n∑

i=0

(
n
i

)
Li is an eigenvalue ofB2 associated with

the positive eigenvector v, it is equal to Perron value
of B2. Combining with the identities, we obtain

∥B2∥2 = L2n,

which completes the proof. �

Corollary 1 Let Ac be defined as (3). For any p ∈ N,
the following statements are true:

(1) If
((

n
0

)
Fp,
(
n
1

)
F1+p,

(
n
2

)
F2+p, · · · ,

(
n
n

)
Fn+p

)
is the first row of Ac, then

∥Ac∥2 = F2n+p.

(2) If
((

n
0

)
Lp,
(
n
1

)
L1+p,

(
n
2

)
L2+p, · · · ,

(
n
n

)
Ln+p

)
is the first row of Ac, then

∥Ac∥2 = L2n+p.

Theorem 3 LetB3 andB4 be defined as in Definition
5, respectively, and m be odd. Then

∥B3∥2 = F2m, ∥B4∥2 = F2m.

Proof. Noticing (5) and (8), it is clear that the spectral
norm of B3 can be calculated by

∥B3∥2 = max
0≤j≤m

|λj(B3)| = max
0≤j≤m

∣∣∣∣∣
m∑
i=0

ai(ω
j)i

∣∣∣∣∣
≤ max

0≤j≤m

{
m∑
i=0

|ai| · |(ωj)i|

}
=

m∑
i=0

|ai| ,

where ai = (−1)i
(
m
i

)
Fi.

Note that, if m is odd, the m+ 1 is even, then

λj0(ηc) = ωj0 = −1

is an eigenvalue of ηc, so the identity holds, i.e.,

∥B3∥2 =
m∑
i=0

|ai|. (10)

Combining (1) and (10) yields ∥B3∥2 = F2m.
In the same manner, we can show ∥B4∥2 = F2m.

This completes the proof. �

Corollary 2 Let Ac be defined as (3) and m is odd.
Then we have

(1) If
((

m
0

)
Fp,−

(
m
1

)
F1+p, . . . ,−

(
m
m

)
Fm+p

)
is

the first row of Ac, then

∥Ac∥2 = F2m+p,

where ∀p ∈ N.
(2) If

(
−
(
m
0

)
Fp,
(
m
1

)
F1+p, . . . ,

(
m
m

)
Fm+p

)
is the

first row of Ac, then

∥Ac∥2 = F2m+p,

where ∀p ∈ N.

Theorem 4 LetB5 andB6 be defined as in Definition
5, respectively, and m be odd. Then

∥B5∥2 = L2m, ∥B6∥2 = L2m. (11)

Proof. From proof of Theorem 3 , we see that (11)
holds. �
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Corollary 3 Let Ac be defined as (3) and m be odd.
Then we have

(1) If
((

m
0

)
Lp,−

(
m
1

)
L1+p, . . . ,−

(
m
m

)
Lm+p

)
is

the first row of Ac, then

∥Ac∥2 = L2m+p,

where ∀p ∈ N.
(2) If

(
−
(
m
0

)
Lp,
(
m
1

)
L1+p, . . . ,

(
m
m

)
Lm+p

)
is the

first row of Ac, then

∥Ac∥2 = L2m+p,

where ∀p ∈ N.

3.2 Spectral norms of some circulant matri-
ces with modified

(
n
i

)
2iFi and

(
n
i

)
2iLi

Definition 6 The circulant matrices are defined as the
following forms

B̃1 =



(
n
0

)
20F0 . . .

(
n
n

)
2nFn(

n
n

)
2nFn . . .

(
n

n−1

)
2n−1Fn−1(

n
n−1

)
2n−1Fn−1 . . .

(
n

n−3

)
2n−3Fn−3

...
. . .

...(
n
1

)
21F1 . . .

(
n
0

)
20F0

 ,

B̃2 =



(
n
0

)
20L0 . . .

(
n
n

)
2nLn(

n
n

)
2nLn . . .

(
n

n−1

)
2n−1Ln−1(

n
n−1

)
2n−1Ln−1 . . .

(
n

n−3

)
2n−3Ln−3

...
. . .

...(
n
1

)
21L1 . . .

(
n
0

)
20L0

 ,

B̃3 =



(
m
0

)
20F0 . . . −

(
m
m

)
2mFm

−
(
m
m

)
2mFm . . .

(
m

m−1

)
2m−1Fm−1(

m
m−1

)
2m−1Fm−1 . . . −

(
m

m−2

)
2m−2Fm−2

...
. . .

...
−
(
m
1

)
21F1 . . .

(
m
0

)
20F0

 ,

B̃4=


−
(
m
0

)
20F0 . . .

(
m
m

)
2mFm(

m
m

)
2mFm . . . −

(
m

m−1

)
2m−1Fm−1

−
(

m
m−1

)
2m−1Fm−1 . . .

(
m

m−2

)
2m−2Fm−2

...
. . .

...(
m
1

)
21F1 . . . −

(
m
0

)
20F0

 ,

B̃5 =



(
m
0

)
20L0 . . . −

(
m
m

)
2mLm

−
(
m
m

)
2mLm . . .

(
m

m−1

)
2m−1Lm−1(

m
m−1

)
2m−1Lm−1 . . . −

(
m

m−2

)
2m−2Lm−2

...
. . .

...
−
(
m
1

)
21L1 . . .

(
m
0

)
20L0

 ,

B̃6=


−
(
m
0

)
20L0 . . .

(
m
m

)
2mLm(

m
m

)
2mLm . . . −

(
m

m−1

)
2m−1Lm−1

−
(

m
m−1

)
2m−1Lm−1 . . .

(
m

m−2

)
2m−2Lm−2

...
. . .

...(
m
1

)
21L1 . . . −

(
m
0

)
20L0


where m, n are integers, and m is odd. Obviously,
B̃4 = −B̃3, B̃6 = −B̃5.

Employing the same approaches as in the above
subsection, we list the main results for those matrices.

Theorem 5 Let B̃1 be defined as in Definition 6.
Then

∥B̃1∥2 = F3n.

Theorem 6 Let B̃2 be defined as in Definition 6. The
we have

∥B̃2∥2 = L3n.

Corollary 4 Let Ac be defined by (3). For any p ∈ N,
we have

(1) if
((

n
0

)
Fp,
(
n
1

)
2F1+p,

(
n
2

)
22F2+p, · · · ,

(
n
n

)
2nFn+p

)
is the first row of Ac, then

∥Ac∥2 = F3n+p.

(2) if
((

n
0

)
Lp,
(
n
1

)
2L1+p,

(
n
2

)
22L2+p, · · · ,

(
n
n

)
2nLn+p

)
is the first row of Ac, then

∥Ac∥2 = L3n+p.

Theorem 7 Let B̃3 and B̃4 be defined as in Definition
6 , respectively, and m be odd. Then

∥B̃3∥2 = F3m, ∥B̃4∥2 = F3m.

Corollary 5 LetAc be defined as in (3) andm be odd.
Then

(1) if
((

m
0

)
20Fp,−

(
m
1

)
21F1+p, . . . ,−

(
m
m

)
2mFm+p

)
is the first row of Ac, then

∥Ac∥2 = F3m+p,

where ∀p ∈ N.
(2) if

(
−
(
m
0

)
20Fp,

(
m
1

)
21F1+p, . . . ,

(
m
m

)
2mFm+p

)
is the first row of Ac, then

∥Ac∥2 = F3m+p,

where ∀p ∈ N.

Theorem 8 Let B̃5 and B̃6 be defined as in Definition
6, respectively, and m be odd. Then

∥B̃5∥2 = L3m, ∥B̃6∥2 = L3m. (13)
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Corollary 6 Let Ac be as (3) and m be odd. Then we
have

(1) if
((

m
0

)
20Lp,−

(
m
1

)
21L1+p, . . . ,−

(
m
m

)
2mLm+p

)
is the first row of Ac, then

∥Ac∥2 = L3m+p,

where ∀p ∈ N.
(2) if

(
−
(
m
0

)
20Lp,

(
m
1

)
21L1+p, . . . ,

(
m
m

)
2mLm+p

)
is the first row of Ac, then

∥Ac∥2 = L3m+p,

where ∀p ∈ N.

4 Spectral norms of skew-circulant
matrices

4.1 Spectral norms of skew-circulant matri-
ces with modified

(
n
i

)
Fi and

(
n
i

)
Li

An odd-order alternative skew-circulant matrix is de-
fined as follows, where s is even.

B7 =



(
s
0

)
F0 . . .

(
s
s

)
Fs

−
(
s
s

)
Fs . . . −

(
s

s−1

)
Fs−1(

s
s−1

)
Fs−1 . . .

(
s

s−2

)
Fs−2

...
. . .

...(
s
1

)
F1 . . .

(
s
0

)
F0

 , (14a)

B8 =


−
(
s
0

)
F0 . . . −

(
s
s

)
Fs(

s
s

)
Fs . . .

(
s

s−1

)
Fs−1

−
(

s
s−1

)
Fs−1 . . . −

(
s

s−2

)
Fs−2

...
. . .

...
−
(
s
1

)
F1 . . . −

(
s
0

)
F0

 , (14b)

B9 =



(
s
0

)
L0 . . .

(
s
s

)
Ls

−
(
s
s

)
Ls . . . −

(
s

s−1

)
Ls−1(

s
s−1

)
Ls−1 . . .

(
s

s−2

)
Ls−2

...
. . .

...(
s
1

)
L1 . . .

(
s
0

)
L0

 , (14c)

B10 =


−
(
s
0

)
L0 . . . −

(
s
s

)
Ls(

s
s

)
Ls . . .

(
s

s−1

)
Ls−1

−
(

s
s−1

)
Ls−1 . . . −

(
s

s−2

)
Ls−2

...
. . .

...
−
(
s
1

)
L1 . . . −

(
s
0

)
L0

 . (14d)

Obviously,

B8 = −B7, B10 = −B9.

Theorem 9 LetB7 andB8 be defined as in (14a) and
(14b), respectively, and s be even. Then

∥B7∥2 = F2s, ∥B8∥2 = F2s.

Proof. We use (2) and (8) to calculate the spectral
norm of B7. For all j = 0, 1, · · · , s,

|λj(B7)| =

∣∣∣∣∣
s∑

i=0

ai(ω
jα)i

∣∣∣∣∣
≤

s∑
i=0

|ai| · |(ωjα)i|

=

s∑
i=0

|ai| =
s∑

i=0

(
s

i

)
Fi,

(15)

where ai = (−1)i
(
s
i

)
Fi.

Since all skew-circulant matrices are normal, we
deduce that

∥B7∥2 = max
0≤j≤s

|λj(B7)| .

If s is even, then s + 1 is odd. We assert that
λsc = −1 is an eigenvalue of ηsc. We calculate the
corresponding eigenvalue of B7 as follows

λĵ(B7) =
s∑

i=0

aiλ
i
sc =

s∑
i=0

ai(−1)i

=
s∑

i=0

(
s

i

)
Fi,

where we have used (2).
Noticing that (15), we claim that λĵ(B7) is the

maximum eigenvalue of B7), which means

∥B7∥2 =
s∑

i=0

(
s

i

)
Fi.

Thus, from (1) we obtain ∥B7∥2 = F2s.
Following the same techniques for B8, we com-

plete the proof. �

Corollary 7 Let Asc be defined as (6) and let s be
even. Then we have

(1) if
((

s
0

)
Fp,−

(
s
1

)
F1+p, . . . ,

(
s
s

)
Fs+p

)
is the first

row of Asc, then

∥Asc∥2 = F2s+p,

where ∀p ∈ N.
(2) if

(
−
(
s
0

)
Fp,
(
s
1

)
F1+p, . . . ,−

(
s
s

)
Fs+p

)
is the

first row of Asc, then

∥Asc∥2 = F2s+p,

where p ∈ N.
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Theorem 10 Let B9 be the matrix de fined as in
(14d), and let s be even. Then

∥B9∥2 = L2s,

Moreover,
∥B10∥2 = L2s.

Proof. Replacing B7 by B9 in (15) yields

|λj(B9)| ≤
s∑

i=0

(
s

i

)
Li, (j = 0, 1, · · · , s− 1).

Note that λsc = −1 is an eigenvalue of ηsc (s+ 1
is odd), we obtain the corresponding eigenvalue ofB9

λj̄(B9) =

s∑
i=0

aiλ
i
sc =

s∑
i=0

ai(−1)i

= −
s∑

i=0

(
s

i

)
Li,

where ai = (−1)i+1
(
s
i

)
Li in B9.

Obviously,

|λj̄(B9)| =
s∑

i=0

(
s

i

)
Li = max

0≤j≤s
|λj(B9)|. (16)

Since the skew-circulant matrix B9 is normal,
combining (1), (8) and (16) yields

∥B9∥2 = max
0≤j≤s

|λj(B9)| =
s∑

i=0

(
s

i

)
Li

= L2s.

Similarly, we can calculate the identity for B10. Then
we complete the proof. �

Corollary 8 Let Asc be as (6) and s be even. Then
(1) if

((
s
0

)
Lp,−

(
s
1

)
L1+p, . . . ,

(
s
s

)
Ls+p

)
is the first

row of Asc, then

∥Asc∥2 = L2s+p,

where ∀p ∈ N.
(2) if

(
−
(
s
0

)
Lp,
(
s
1

)
L1+p, . . . ,−

(
s
s

)
Ls+p

)
is the

first row of Asc, then

∥Asc∥2 = L2s+p,

where p ∈ N.

4.2 Spectral norms of skew-circulant matri-
ces with modified

(
n
i

)
2iFi and

(
n
i

)
2iLi

Similarly, set s is even, then we list some odd-order
alternative skew-circulant matrices as follows.

B̃7 =



(
s
0

)
20F0 . . .

(
s
s

)
2sFs

−
(
s
s

)
2sFs . . . −

(
s

s−1

)
2s−1Fs−1(

s
s−1

)
2s−1Fs−1 . . .

(
s

s−2

)
2s−2Fs−2

...
. . .

...(
s
1

)
21F1 . . .

(
s
0

)
20F0

 ,

(17a)

B̃8 =


−
(
s
0

)
20F0 . . . −

(
s
s

)
2sFs(

s
s

)
2sFs . . .

(
s

s−1

)
2s−1Fs−1

−
(

s
s−1

)
2s−1Fs−1 . . . −

(
s

s−2

)
2s−2Fs−2

...
. . .

...
−
(
s
1

)
21F1 . . . −

(
s
0

)
20F0

 ,

(17b)

B̃9 =



(
s
0

)
20L0 . . .

(
s
s

)
2sLs

−
(
s
s

)
2sLs . . . −

(
s

s−1

)
2s−1Ls−1(

s
s−1

)
2s−1Ls−1 . . .

(
s

s−2

)
2s−2Ls−2

...
. . .

...(
s
1

)
21L1 . . .

(
s
0

)
20L0

 ,

(17c)

B̃10 =


−
(
s
0

)
20L0 . . . −

(
s
s

)
2sLs(

s
s

)
2sLs . . .

(
s

s−1

)
2s−1Ls−1

−
(

s
s−1

)
2s−1Ls−1 . . . −

(
s

s−2

)
2s−2Ls−2

...
. . .

...
−
(
s
1

)
21L1 . . . −

(
s
0

)
20L0

 .

(17d)
Obviously, B̃8 = −B̃7, B̃10 = −B̃9.

Theorem 11 Let B̃7 be defined as before, and s be
even. Then

∥B̃7∥2 = F3s,

and
∥B̃8∥2 = F3s.

Corollary 9 Let Asc be defined by (6) and s be even.
Then we have

(1) if
((

s
0

)
20Fp,−

(
s
1

)
21F1+p, . . . ,

(
s
s

)
2sFs+p

)
is

the first row of Asc, then

∥Asc∥2 = F3s+p,

where ∀p ∈ N.
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(2) if
(
−
(
s
0

)
20Fp,

(
s
1

)
21F1+p, . . . ,−

(
s
s

)
2sFs+p

)
is the first row of Asc, then

∥Asc∥2 = F3s+p,

where p ∈ N.

Theorem 12 Let B̃9 and B̃10 be the matrix defined by
(17c) and (17d), respectively, and let s be even. Then

∥B̃9∥2 = L3s, ∥B̃10∥2 = L3s.

Corollary 10 LetAsc be defined as in (6) and let s be
even. Then

(1) if
((

s
0

)
20Lp,−

(
s
1

)
21L1+p, . . . ,

(
s
s

)
2sLs+p

)
is

the first row of Asc, then

∥Asc∥2 = L3s+p,

where ∀p ∈ N.
(2) if

(
−
(
s
0

)
20Lp,

(
s
1

)
21L1+p, . . . ,−

(
s
s

)
2sLs+p

)
is the first row of Asc, then

∥Asc∥2 = L3s+p,

where p ∈ N.

5 Spectral norms of g-circulant ma-
trices

Inspired by the above propositions, we will analyse
spectral norms of some given g-circulant matrices.

Lemma 1 [24] The (n + 1) × (n + 1) matrix Qg is
unitary if and only if

(n+ 1, g) = 1, (18)

where Qg is a g-circulant matrix with first row e∗ =
[1, 0, · · · , 0].

Lemma 2 [24] A is a g-circulant matrix with first
row [a0, a1, · · · , an] if and only if

A = QgC, (19)

where
C = circ(a0, a1, · · · , an).

In the following, we assume that (n+ 1, g) = 1.

5.1 Spectral norms of g-circulant matrices
with modified

(
n
i

)
Fi and

(
n
i

)
Li

We list two (n+ 1)× (n+ 1) g-circulant matrices as
following.

B11 =



(
n
0

)
F0 . . .

(
n
n

)
Fn(

n
n−g+1

)
Fn−g+1 . . .

(
n

n−g

)
Fn−g(

n
n−2g+1

)
Fn−2g+1 . . .

(
n

n−2g

)
Fn−2g

...
. . .

...(
n
g

)
Fg . . .

(
n

g−1

)
Fg−1

 ,

(20a)

B12 =



(
n
0

)
L0 . . .

(
n
n

)
Ln(

n
n−g+1

)
Ln−g+1 . . .

(
n

n−g

)
Ln−g(

n
n−2g+1

)
Ln−2g+1 . . .

(
n

n−2g

)
Ln−2g

...
. . .

...(
n
g

)
Lg . . .

(
n

g−1

)
Lg−1

 .

(20b)

Theorem 13 Let B11 and B12 be defined as the ma-
trix (20a) and (20b), respectively. Then

∥B11∥2 = F2n, ∥B12∥2 = L2n.

Proof. According to Lemma 1 Lemma 2, the g-
circulant matrixB11 is normal, we claim that the spec-
tral norm of B11 is equal to its spectral radius. Apply-
ing the irreducible and entrywise nonnegative prop-
erties, we claim that ∥B11∥2 (i.e., its spectral norm),
is equal to its Perron value. We select a (n + 1)-
dimensional column vector v = (1, 1, · · · , 1)T , then

B11v =

(
n∑

i=0

(
n

i

)
Fi

)
v.

Obviously,
n∑

i=0

(
n
i

)
Fi is an eigenvalue of B11 associ-

ated with v, which is necessarily the Perron value of
B11. Employing (1), we obtain

∥B11∥2 = F2n.

Employing the same techniques, we can obtain
the equality for B12. This completes the proof. �

Corollary 11 Let Ag be as (7) and (n + 1, g) = 1.
Then

(1) if
((

n
0

)
Fp,
(
n
1

)
F1+p, . . . ,

(
n
n

)
Fn+p

)
is the first

row of Ag, then

∥Ag∥2 = F2n+p,
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where ∀p ∈ N.
(2) if

((
n
0

)
Lp,
(
n
1

)
L1+p, . . . ,

(
n
n

)
Ln+p

)
is the first

row of Ag, then

∥Ag∥2 = L2n+p,

where ∀p ∈ N.

5.2 Spectral norms of g-circulant matrices
with modified

(
n
i

)
2iFi and

(
n
i

)
2iLi

We list two (n+ 1)× (n+ 1) g-circulant matrices
with

(
n
i

)
2iFi and

(
n
i

)
2iLi. Following the same tech-

niques, we can prove these theorems.

B̃11 =



(
n
0

)
20F0 . . .

(
n
n

)
2nFn(

n
n

)
2nFn . . .

(
n

n−1

)
2n−1Fn−1(

n
n−1

)
2n−1Fn−1 . . .

(
n

n−2

)
2n−2Fn−2

...
. . .

...(
n
1

)
21F1 . . .

(
n
0

)
20F0

 ,

(21a)

B̃12 =



(
n
0

)
20L0 . . .

(
n
n

)
2nLn(

n
n

)
2nLn . . .

(
n

n−1

)
2n−1Ln−1(

n
n−1

)
2n−1Ln−1 . . .

(
n

n−2

)
2n−2Ln−2

...
. . .

...(
n
1

)
21L1 . . .

(
n
0

)
20L0

 .

(21b)

Theorem 14 Let B̃11 and B̃12 be defined as in (21a)
and (21b), respectively. Then

∥B̃11∥2 = F3n, ∥B̃12∥2 = L3n.

Corollary 12 Let Ag be as in (7) and (n+ 1, g) = 1.
The we have

(1) if
((

n
0

)
20Fp,

(
n
1

)
21F1+p, . . . ,

(
n
n

)
2nFn+p

)
is

the first row of Ag, then

∥Ag∥2 = F3n+p,

where ∀p ∈ N.
(2) if

((
n
0

)
20Lp,

(
n
1

)
21L1+p, . . . ,

(
n
n

)
2nLs+p

)
is

the first row of Ag, then

∥Ag∥2 = L3n+p,

where p ∈ N.

Here, we give a proposition without proof.

Proposition 1 Let Agi (i = 1, 2) be a gi-circulant
matrix as in (7), respectively. Then

∥Ag1∥2 = ∥Ag2∥2,

where (n+ 1, g1) = 1, (n+ 1, g2) = 1 and g1 ̸= g2.

6 Numerical examples

Example 1. In this example, we give the numerical
results for B1 and B2 in Table 1.

Table 1: Spectral norms of circulant matrices B1 and
B2

n 2 3 4 5 6 7 8

∥B1∥2 3 8 21 55 144 377 987
∥B2∥2 7 18 47 123 322 843 2207

Example 2. In this example, we list the numeri-
cal results for alternative circulant matrices Bi (i =
3, 4, 5, 6) in Table 2.

Table 2: Spectral norms of alternative circulant matri-
ces

m 1 3 5 7 9

∥B3∥2 1 8 55 377 2584
∥B4∥2 1 8 55 377 2584
∥B5∥2 3 18 123 843 5778
∥B6∥2 3 18 123 843 5778

Example 3. In this example, we reveal the numerical
results for alternative skew-circulant matrices Bi (i =
7, · · · , 10) in Table 3.

Table 3: Spectral norms of alternative skew-circulant
matrices

s 2 4 6 8

∥B7∥2 4 21 144 987
∥B8∥2 4 21 144 987
∥B9∥2 7 47 322 2207
∥B10∥2 7 47 322 2207

Example 4. In this example, we show the numerical
results for B11 and B12 in Table 4.

Table 4: Spectral norms of B11 and B12

n+ 1 5 7 8
g 2 3 4 5 6 3 5

∥B11∥2 21 21 21 144 144 377 377
∥B12∥2 47 47 47 322 322 843 843
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The above results demonstrate that the identities
of spectral norms for the given matrices hold.

7 Conclusion
This paper had discussed the explicit formulations
for identity estimations of spectral norms for circu-
lant, skew-circulant matrices and g-circulant matrices,
whose entries are binomial coefficients combined with
Fibonacci and Lucas numbers, respectively. Further-
more, if aj take other values, we can obtain more
interesting identities. The same approaches can be
used to verify those identities. By setting different
p ∈ N, we can obtain much more results. It is an
open problem to investigate the properties of Bi, (i =
1, 2, · · · , 12), such as the explicit formulations for de-
terminants and inverses, only using the entries in the
first row. The economists can use them to construct
the optimal filter for some economic model and design
the most modern circulant-type filters, investigate the
rules of some given model in economics.
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